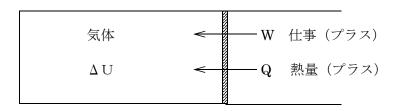
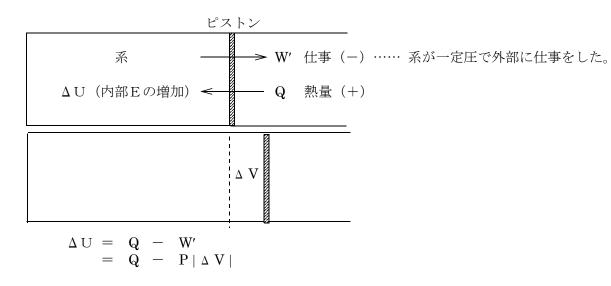
内部エネルギー U

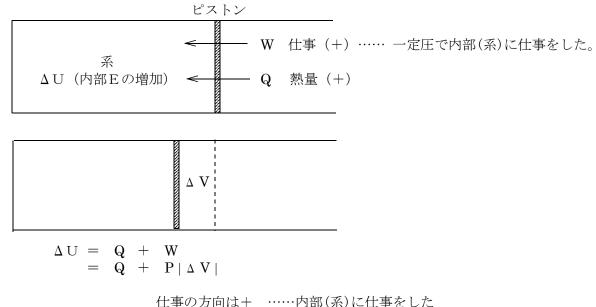

物質や場のもつエネルギーからそれらの全体としての運動に関する運動エネルギーを 引いた残りの部分。内部エネルギーは、系の状態によって定まる1つの状態量。

$$\begin{array}{ccc} \Delta & U = J Q' \text{ (cal)} + W \\ &= Q_{(J)} + W_{(J)} \end{array}$$

Δ U:内部エネルギーの増加分 Q':cal(カロリー)単位の熱量


J : 熱の仕事当量(4.1855 =) 4.2 J/cal

W:仕事……外部から系(気体)に対しての仕事

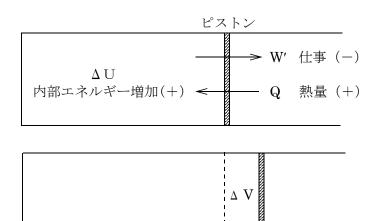


熱力学第一法則……内部エネルギー変化 Δ U は、系が得た熱量Qと、系に可逆的になされた仕事W の和(または差)で表される。

一定圧で外部に仕事をした場合

一定圧で内部に仕事をした場合

エンタルピー変化 (Δ H) と内部エネルギー変化 (Δ U) と仕事W (PV) の関係


あるいは、 H=U+PV で、Pは定数だから $\Delta H=\Delta U+P\cdot\Delta V$

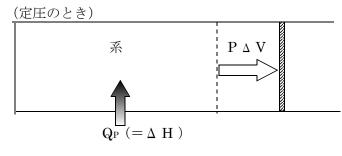
$$\Delta H = \Delta U + P\Delta V$$
 (定圧)①

定圧の開放系での物質変化は、体積変化と同時に外界との間でエネルギーのやり取りを行う。

反応熱 Q とエンタルピー変化 Δ H の関係

Q は定圧反応熱だから QP とすると Δ U 内部エネルギー変化(増加)は

$$\Delta \, \mathrm{U} \, = \, \mathrm{Q}_{\mathrm{P}} \, - \, \mathrm{P} \, \Delta \, \mathrm{V} \, \cdots \, \mathrm{2}$$
 (定圧状態の系)


エンタルピー変化ΔHは、

$$\Delta H = \Delta U + P \Delta V$$
 \leftarrow ①より $= (Q_P - P \Delta V) + P \Delta V$ \leftarrow ②を代入 $= Q_P$

$$Q_P = \Delta H$$
 3

別解

$$\Delta U = Q_P - P \Delta V \leftarrow ② より$$
 $U_2 - U_1 = Q_P - P (V_2 - V_1)$
 $\therefore Q_P = (U_2 + PV_2) - (U_1 + PV_1)$
 $= H_2 - H_1 \leftarrow x y y v v v - o c c 義 より$
 $= \Delta H$

(参考)

定積状態の系では

$$\Delta V = 0$$
 だから $\Delta U = Q - P \Delta V$ $= Q$

Q は定積反応熱だから Qv とすると , Δ U は

$$\Delta U = Qv$$
 ($Qv : 定積反応熱$)

内部エネルギー U とモル比熱 C (cal/K·mol)

$$C = \frac{Q}{\Delta T} \cdots \odot$$

モル比熱C (cal/K·mol) ……物質1 mol の温度を1 K上昇させるのに要する熱量モル比熱を、熱容量と表現している場合もある。

$$\Delta U = J Q'$$
 (cal) $+ W$ 4)

$$Q' = \frac{1}{J} (\Delta U - W) = \frac{1}{J} \{\Delta U - P (-\Delta V)\}$$
$$= \frac{1}{J} (\Delta U + P \Delta V)$$

⑤に代入して

体積を一定(Δ V = 0)に保って、温度を上げるときのモル比熱が 定積モル比熱 \mathbb{C}_{v} である。

$$C_{V} = \frac{1}{J} \frac{\Delta U}{\Delta T} \cdots ?$$

圧力を一定(Δ P = 0)に保って、温度を上げるときのモル比熱が 定圧モル比熱 \mathbb{C} P である。 \mathbb{O} \mathbb{C} \mathbb{C}

$$C_P = \frac{1}{J} \left(\frac{\Delta U}{\Delta T} + P \frac{\Delta V}{\Delta T} \right)$$
 ……⑥´ (Pは一定)

$$= C_{V} + \frac{1}{J} \cdot P \cdot \frac{\Delta V}{\Delta T} \quad \cdots \cdot \cdot \cdot \cdot \cdot \cdot \otimes$$

1 モルの気体で、圧力は一定・温度が ΔT (K) 上昇したとき、体積は ΔV 変化したとする。

$$PV = RT \cdots a$$

 $P(V + \Delta V) = R(T + \Delta T) \cdots b$

a、bより

$$P \Delta V = R \Delta T$$

$$\therefore$$
 $P \frac{\Delta V}{\Delta T} = R$ これを $\$$ に代入して

$$C_P = C_V + \frac{R}{J}$$

CP, Cvの単位を (J/K·mol) とすると、⑨式は、

$$C_P - C_V = R$$
 となる。